CSE 6390D Prof.]. Elder

CSE 6390D 2010 (F)
Prof.]J. Elder
Assignment 1

Overview

In this assignment, we will apply our understanding of probabilistic models and
supervised learning to the problem of shape representation. We will restrict our
attention to planar (two-dimensional) shape, in particular to the boundaries of
animal models.

In the visual world, objects are often obscured or occluded by intervening objects,
resulting in fragmented boundaries and a loss of shape information. A good visual
system must be robust to such problems.

One advantage of generative models is that they can fill in missing data based upon
partial observation. In the context of our problem, this means that the missing
portion of the boundary can be estimated. This is the problem of shape completion.

In particular, we will evaluate our models by occluding a contiguous 10% portion of
an object boundary, and then using our models to estimate these missing data. The
root-mean-square Euclidean error between the true locations of the missing points
and our estimates will be computed. Our goal is to minimize this error.

Dataset

The dataset is drawn from the Hemera database of 150,000 blue-screened photo-
objects. From these I have selected 350 animal objects and randomly partitioned
them into training and test datasets of 175 objects each. The boundary of each
object has been down-sampled to a vector of D =128 points. Each point of a shape
is a 2D Euclidean coordinate. We represent this as a complex number x +iy . The

data and code I provide uses this representation, as it makes the code a little
simpler.

Each shape has been normalized to a unit circle using a Procrustes transformation.
For the purposes of this assignment it is not necessary to understand this
normalization process, but there are two crucial implications:

1. Thereisa 1:1 correspondence between the 128-element vectors
representing each shape, which facilitates analysis.
2. The expected position of a point on a shape is given by the corresponding
2mi
oint on the unit circle: E|(x,y.)|=(cos8,sin6.), where 6. = —.
p I:(i y|):I (i |) i D

You can access the training dataset now from the course website.

CSE 6390D Prof.]. Elder

Code
[have provided code for 3 models:

Model 1. This is a very simple generative model that assumes shape vectors are
drawn from an isotropic multivariate normal distribution. (In other words the
covariance matrix is a diagonal matrix with a constant diagonal.) There is a single
scalar parameter: the variance.

Functions:
e ShapeModellML.m - computes maximum likelihood estimate of the
parameter
e ShapeModellSample.m - generates and displays random samples from the
model

e ShapeModellComplete.m - estimates missing portion of a given shape

Model 2. In this generative model, shape vectors are assumed to be samples from a
general multivariate normal distribution. There is only one parameter, the
covariance matrix, but this represents D(D + 1)/ 2 degrees of freedom (i.e., scalar

unknowns).
Functions:
e ShapeModel2ZML.m - computes maximum likelihood estimate of the
parameters
e ShapeModel2Sample.m - generates and displays random samples from the
model

e ShapeModel2Complete.m - estimates missing portion of a given shape

Model 3. This model is not generative: it simply uses linear interpolation to
estimate the missing points.
Functions:

e ShapeModel3Complete.m - estimates missing portion of a given shape

An additional function EvaluateShapeModelsOnCompletion.m is also provided. This
function accepts training and test datasets, uses the training dataset to estimate the
maximum likelihood parameters, and then evaluates average RMS error on the test
dataset. Note that you will have to partition the training dataset I provide you into
training and test portions in order to use this function.

This code can now be downloaded from the website.

CSE 6390D Prof.]. Elder

Tasks
1.

First start by downloading the dataset and code. Make sure that you can run
the code and that you are not missing any required toolbox functions. First
run the ML functions to estimate the parameters. Then try running the
Sample functions to visualize the information contained in Models 1 and 2.
Do they generate plausible shapes? Finally, try running the three Completion
functions. Do they do a good job in filling in the missing data?

Now go through the code in detail and make sure you understand each step.
It is often helpful to use the debugger to step through line-by-line, examining
data structures along the way.

Note that if you train these algorithms using all 175 training shapes, and then
test on one of these shapes, performance may be better than on data you
have never seen (overlearning). Thus you should subdivide the training data
into your own training and test portions to get a more realistic idea of
performance.

Now using these training and test partitions, you can use
EvaluateShapeModelsOnCompletion.m to compare each model. Which do
you think is the best of the three?

Now for the fun part: your goal is to create a new algorithm that performs
better than any of the 3 models I have given you. You can create as many as
you like, and document them in your report, but only one will be evaluated
on the test set. In the near future I will distribute a template for the function

you will use to evaluate your method on the test set.

Grading: This assignment is worth 20% of the course mark. Grades will be

determined by the quality of the report submitted and the accuracy of your

algorithms. You also get points if you find any bugs in code I provide!!

